
Les événements -
utilisation dans

Symfony

Meetup symfony montpellier
30 janvier 2017 - 1001 Pharmacies

Bonjour et désolé!

Julien Vinber
Développeur Application et Web
pour l'éditeur de logiciel Yooda

Programmation
séquentielle

1

“
la programmation séquentielle est un

paradigme de programmation dans laquelle le
déroulement des instructions du programme

est toujours le même (les instructions
elles-mêmes peuvent être différentes en

fonctions des embranchements,...).

Wikipedia

Simple ?

L’homme

Plus on est libre, plus les
choix à faire sont complexes

Sauve-moi - Guillaume Musso

Quelle solution ?

Programmation
événementielle

2

Gestionnaire d’événement

On ne cherche plus à complexifier du code pour gérer les
interactions. Au contraire on le découpe en petite action
simple et autonome.

PHP et les événements ?

3

“

Par exemple lors de la création d’un
utilisateur on peut vouloir :
● Envoyer un mail de confirmation
● Créer un utilisateur dans la gestion Co.
● Envoyer une alerte aux commerciales pour

contacter le client.
● Lui envoyer dans 7 jours une offre promo.
● Valider son mail.
● Vérifier s’il y a un parrain et lui envoyer une

récompense.
● ...

Oui, mais voilà, les applications se complexifient

Résultat, un code qui fait tout et n’importe quoi.

Les événements avec
Symfony.

4

Exemple lors de la création d’un utilisateur :
● On crée l’utilisateur en base
● Déclenchement d’un événement
● Fin.

On crée un écouteur pour l’envoi des mails
● On enregistre l’écouteur
● Je suis appelé
● J’envoie mon mail
● Fin
● ...

Principe

Avantage
● Enlève les

dépendances
● Découpage en

action simple.
● Test simplifier.
● On revient sur

un découpage
métier.

Inconvénient
● Plus de code

dans l’absolu.
● Perte de

linéarité du
code.

● Plus difficile à
débugger

Particularité
N’étant pas géré en
natif. Le code reste
mono thread et
synchrone.

Exemple de code :

5

Créer un événement

5.1

Créer l'objet événement

class UserEvent extends Event

{

 const EVENT_USERCREATE = 'user.create';

 protected $user;

 public function __construct(User $user)

 {

 $this->user = $user;

 }

 public function getUser()

 {

 return $this->user;

 }

}

Déclenchement

$user = new User();

$user->setEmail('julien@vinber.fr');

$event = new UserEvent($user);

$this->get('event_dispatcher')->dispatch(UserEvent::EVENT_US
ERCREATE, $event);

Répondre à un événement.

5.2

Le code qui est appelé.

class EnvoyerMailConfirmation

{

 public function onUserCreate(UserEvent $event)

 {

 $user = $event->getUser();

 dump($user);

 }

}

Enregistrement

app.envoyermail.user.create:

 class: App\AppBundle\Event\EnvoyerMailConfirmation

 tags:

 - { name: kernel.event_listener, event: user.create }

Événement existant

6

Kernel.request

Kernel.controller

Kernel.view

Kernel.response

Kernel.terminate

Kernel.exception

Merci!

Des questions?
julien@vinber.fr

